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Experimentally tracking unstable steady states by large periodic modulation
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Experimental suppression of chaos has been achieved in an optically pumped far-itiktigdaser which
displays Lorenz-like chaos. The method of control involves the application of a large amplitudéi.glow
nonresonantmodulation of the pump power. This may be related to a delayed bifurcation to chaos observed
when the pump power is ramped at a constant f&#&063-651X98)10301-X]

PACS numbgs): 05.45:+b, 42.60.Mi, 42.65.5f, 47.52
I. INTRODUCTION Il. EXPERIMENT

There has been a lot of effort in the last few years devotec:i.h;—hr?1 (fs);psigr:i:g;ltss ;?tz |zfs[1hoew geisgeir:gﬂgae”)é?!ggg' =

tp the pOSSIbI.|Ity of changlng the determlmspc chaos in non aser pump and the method whereby its output is modulated.
linear dynamic systems into regular behavior. Such controtpa rest of the setup is the same as has been previously

of chaos falls into two categories; techniques where the dyfeported by Winet al. [8]. The *CO, laser pump power is
namics of the system are perturbed using feedbad}, and  onirgjled by the use of an acousto-optic moduldf&®M).
techniques whereby no feedback is employf8#]. The e hower of the rf traveling wave injected into the crystal
feedback mechanisms can be subdivided into the categoriggermines how much of the incident light is diffracted. Am-
of continuous2] or discrete feedbackl], and generally in- pji,de modulating the rf drive therefore gives a simple
volve the perturbative stabilization of an unstable point oreans of producing a time varying pump power. We have
orbit in phase space. The nonfeedback mechanisms can al§geq an arbitrary function generator to produce the complex
be divided into two categories. An oscillation resonant Ofgnctions shown in the experimental figures. In this way we
near reso_nant with a ;ystem instability may stabilize an Unyere able to establish pump levels where the system was
stable point or orbit in some perturbed part of the phasgapie or unstable, and thereby bracket the chaos threshold
space|5,4]. The system dynamics may also be made stablg, e Because slow drifts of pressures and cavity lengths can
in regions where chaos normally occurs in the unperturbeghaq 1o Jong term uncertainties in the values of the system
system by applying a slow, nonresonant change 10 it. SoMgsarameters we have tried as much as possible to set up sce-

thing similar was initially demonstrated by Mandel and Er- 4165 where the control is demonstrated unambiguously
neux[6], who applied a slow linear increase in time of the \,ithin single short experimental records.

Rayleigh number in the Lorenz equations. They showed that
the onset of the first bifurcation in the equations comes at
larger Rayleigh number than for the unperturbed equations.
More recently Vilasecat al.[7] have shown that a large-
amplitude slow periodic modulation of a control parameter, In order to demonstrate control of chaos the signal shown
namely, the pump power or the detuning, can in the complexn the upper portion of Fig. 2 was applied to the pump. The
Lorenz-Haken equations suppress chaos. They have showsignal is the amplitude of the diffracted light from the AOM,
in the case of pump power modulation, that the output inteninverted to reflect the behavior of the pump. The signal
sity of the laser almost exactly follows the intensity of the shows an oscillation of frequency approximately 600 Hz fol-
stationary solution corresponding to the instantaneous valuewed by two periods of constant pump intensity. The modu-
of the pump power, as the pump power is modulated abouation period is around 10" of the average frequency of the
the chaos threshold. The system remains cloggdcks the  chaotic pulsations and compares well with the theory. The
steady state solution at any time instead of becoming chaotiesponse of the laser to the two constant pump power levels
when the pump crosses the chaos threshold. They alsshows that the chaos threshold is somewhere between these
showed that the system is globally stable by the fact that théevels. The peak to peak amplitude of the oscillations shown
stability was unaffected by the value of the initial conditions.in the figure is about 15% of the chaos threshold pump
Their paper goes on to give a detailed account of the effect gbower. Control at such a low ratio is achievable with the
modulating the detuning in the laser, achieving similar re-complex Lorenz-Haken equations but is at the lower end of
sults. Although at the present time it is not possible with ourthe range. However, whenever measurements of the chaos
experimental apparatus to modulate the detuning, we are ablbreshold of the laser are made it has always been higher
to modulate the pump power. Our experiments show that théhan that shown by the theory. There is good reason to be-
suppression of chaos by modulating the pump power as prdieve that one of the explanations for this is imperfect pump
sented by Vilasecet al. [7] is indeed possible in the opti- mode coupling to the laser mode in the cavity. It has clearly
cally pumped far-infrared'®NH; laser when it displays been shown that if the pump mode is not matched to the laser
Lorenz-like chaos. There is experimental evidence that thenode the pump power required to reach the chaos threshold
method of Vilasecat al. can control dynamical regimes and increases markedI}9]. As the pump mode could never be
inhibit chaos in a nonautonomodise., driven system[13]. perfectly coupled to the laser mode due to their differences in

lIl. RESULTS
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wavelength an increase in the pump power required to reach Whenever the behavior deviates from that shown in Fig. 2
chaos threshold follows and this results in a decrease in thiéne behavior shown in Figs. 4 or 6 appears. In the laser the
ratio of modulation amplitude to threshold level. dynamics always destabilize first on the negative slope of the

In Fig. 2 the output of the laser clearly shows that themodulation of the pump power and then the instability
chaos threshold is somewhere between the two constaspreads to the positive slope as any parameter, such as de-
pump power levels and that the modulations oscillate abouiuning or pump power modulation intensity, are changed,
the chaos threshold. The oscillations show no chaos, indicagway from stability. The region which becomes chaotic last
ing that the chaos has been suppressed in the manner shoignwhere the pump power modulation slope is maximum.
by Vilasecaet al. Figure 3 is an expansion of a part of the Figure 5 shows a closeup of the region represented by the
chaotic region in Fig. 2 to show that the laser is producingnegative slope of the pump power in Fig. 4. The periodic
Lorenz-like chaos with long spirals. This behavior has beerbehavior shown here is always precursory to the chaotic be-
observed in the laser for only a small region of tuning whichhavior displayed in Fig. 6. Even in Fig. 7, a closeup of the
is close to zero detuning. The pressure was found not to bmodulations in Fig. 6, the periodic behavior is present before
critical with control being achieved as long as the pressure ithe oscillations die away.
above about 2q.bar. This is the region where the chaos in  Vilasecaet al.[7] reported similar less than perfect track-
the laser approaches closest to true Lorenz chaos, with theg behavior where the laser detuning was modulated. We
double cusp observed in the return maps almost disappearitve examined numerical solutions of the complex Lorenz-
[9]. Haken equations for zero detuning and found similar behav-
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FIG. 2. Time evolution of the output intensity of the laser, the
lower time trace, plus the corresponding pump power intensity in
the upper time trace. Behavior during the two constant pump power
periods indicates clearly that the chaos threshold must be some- FIG. 3. Time evolution of a small portion of the intensity data in
where between the two levels. The laser was operated at a pressuf@gy. 2. The characteristic spiraling observed in Lorenz chaos is
of 30 ubar. Amplitude units are in volts, which is proportional to clearly present. Amplitude units are in volts, which is proportional
intensity. to intensity.
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FIG. 4. The time evolution of the laser intensity and pump FIG. 6. The time evolution of the laser intensity and pump
power intensity as shown in Fig. 2. The negative slope of the pumgpower intensity as shown in Fig. 2. The negative slope of the pump
power modulation is periodic. The laser operated with all the saméower modulation is chaotic and resembles Lorenz-like chaos in its
parameters as in Fig. 2 but with the laser slightly tuned away. Am-spiral-like nature. The laser operated with all the same parameters
plitude units are in volts, which is proportional to intensity. as in Fig. 2 but with the laser tuned slightly more than in Fig. 4.

Amplitude units are in volts, which is proportional to intensity.
ior as the pump power is increased or modulation amplitude
is decreased. Figurese3—8(d) show the transition to chaos stable basin on the positive slope trying to settle on one of
as the modulation amplitude is changed from 2.3 to 1.5, fothe stable fixed points but not having settled down enough to
an average pump power of 14 which is at the chaos threststay within this basin on the negative slope. The trajectory
old. We hypothesize that the behavior shown in Fig. 8 is dudenceforth spirals outward again into preturbulence. Once
to the delayed onset of the bifurcation to chaos which natuthe trajectory is close enough to the stable fixed point as the
rally occurs in the Lorenz equatiof$0,11. When the Lo-  slope of the pump power changes from positive to negative,
renz equations show metastable chaos, the phase spacethe trajectory stays within the basin of the stable point and
divided into three basins of attraction, two of which containthereafter remains there. The unstable limit cycle which de-
stable fixed points and one of which has a chaotic attractofines the border between the stable and unstable basins there-
whose trajectories at one time intersect either basin of théore must be smaller in size on the negative slope of the
fixed points to finish at one of them. FiguréaB8 shows a pump power modulation than on the positive slope. In fact in
small period of preturbulence after which the trajectory spi-Fig. 8(c) the limit cycle no longer exists on the negative
rals into the tracking fixed point, indicating that the limit slope but obviously does on the positive slope. Figuid 8
cycle which denotes the boundary between the basins of ashows the attractor when chaos has fully developed. The
traction in the Lorenz equations exists well above the chaomain differences between the route to chaos in the laser and
threshold. Figure @) shows the trajectory intersecting a that shown in the equations is the appearance of the noncha-
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FIG. 5. A closeup of the output intensity shown in Fig. 4. Am-  FIG. 7. A closeup of the output intensity shown in Fig. 6. Am-
plitude units are in volts, which is proportional to intensity. plitude units are in volts, which is proportional to intensity.
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FIG. 8. Numerical results showing the route to chaos as the
pump power modulation amplitude is changed=2.0, b=0.25,
andr=14. (a) has the peak to peak pump power modulation am-
plitllee at 4.6,(b) at 4.2,(c) at 3.8, andd) at 3.0. The time unit is

FIG. 10. The time evolution in the nondetuned Lorenz-Haken
equations of the output intensitgotted ling as the pump power
(solid line) is ramped up and down. The horizontal lines indicate the
lasing threshold and the chaos threshold for the laser. The delayed
Yoo bifurcations are clearly visible on the positive slope. The negative

. . . . slope instantaneously spirals out into chaos, showing no stabilit
otic fast oscillation described above in the laser betwee b Y 'sp 9 y

h d d Thi be simil h hatsoever for higher pump powers. The turn off is hard to judge
chaos and steady state. Is seems to be similar to what With the preturbulent region which the laser has to negotiate first.

observed in the laser when it is taken through the bifurcaThe figure therefore gives no clear estimate of the chaos threshold

tions to chaos in a more conventional wWdy]. for the negative slope. The time unitjs L.
It could be thought that a system one of whose parameters

is changing only very slowly compared with its intrinsic dy- ) .

namics should be in a quasi steady state. However, this £ @ steady pump can be seen to lie below the middie one of
clearly not the case here because the dynamics have obyhe three levels, while the onset of chaos during the ramp
ously been changed radically. As a next level of approximaoccurs at a considerably higher level, as indicated by the
tion one might consider modulation with a constant rate ofdotted line. Solutions to the equations nearly always show a
change. Indeed as can be seen in Figs. 9 and 10 a pundelay. In the example shown in Fig. 10 the onset of the
power with a constant rate of change does delay the onset bifurcation to chaos is delayed sufficiently to be prevented
the bifurcation when the pump power is increasing in time.completely for the parameter range shown. Figure 10 also
Figure 9 clearly shows the transition to chaos in the laseshows that when the pump power has a negative rate of
significantly delayed. In this experiment, the chaos threshol¢éhange the stability disappears above the chaos threshold.
This has been found over a wide range of the pump power
when the rate of change is negative. It could be that the
bifurcation is also delayed with the transition to stability oc-
curring at lower pump power, however, this cannot be dis-
cerned from the experimental data at present. What can be
concluded from this is that one has to be very careful in
using approximations to describe slow dynamic changes in
potentially chaotic systems.

Laser Intensity

IV. CONCLUSIONS

Pump Intensity

We have shown in this paper that by modulating the pump
power of the optically pumped far-infrarédNH; laser, sup-
pression of Lorenz-like chaos is possible as predicted by
Vilaseca et al. The system tracks the formerly unstable
steady state a significant distance into the chaotic regime. If

FIG. 9. Time evolution of the output intensity of the laser and Stability is lost it always happens as the pump parameter is
the corresponding pump power intensity. The delayed onset of th8ropping rather than on the rise. This is consistent with the
bifurcation to chaos is clearly present as it is above the constar€havior when the pump power is ramped up and down with
pump power which is already chaotic. The laser was operated at @onstant rates of change. In every case, we have confirmed
pressure of 3Qubar. Amplitude units are in volts, which is propor- that numerical solutions of the complex Lorenz-Haken equa-
tional to intensity. tions exhibit behavior similar to that observed.
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