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Experimentally tracking unstable steady states by large periodic modulation

R. Dykstra, A. Rayner, D. Y. Tang, and N. R. Heckenberg
The Department of Physics and Centre for Laser Science, The University of Queensland, St. Lucia, Queensland 4072, Aust

~Received 9 September 1997!

Experimental suppression of chaos has been achieved in an optically pumped far-infrared15NH3 laser which
displays Lorenz-like chaos. The method of control involves the application of a large amplitude slow~i.e.,
nonresonant! modulation of the pump power. This may be related to a delayed bifurcation to chaos observed
when the pump power is ramped at a constant rate.@S1063-651X~98!10301-X#

PACS number~s!: 05.45.1b, 42.60.Mi, 42.65.Sf, 47.52.1j
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I. INTRODUCTION

There has been a lot of effort in the last few years devo
to the possibility of changing the deterministic chaos in no
linear dynamic systems into regular behavior. Such con
of chaos falls into two categories; techniques where the
namics of the system are perturbed using feedback@1,2#, and
techniques whereby no feedback is employed@3,4#. The
feedback mechanisms can be subdivided into the categ
of continuous@2# or discrete feedback@1#, and generally in-
volve the perturbative stabilization of an unstable point
orbit in phase space. The nonfeedback mechanisms can
be divided into two categories. An oscillation resonant
near resonant with a system instability may stabilize an
stable point or orbit in some perturbed part of the ph
space@5,4#. The system dynamics may also be made sta
in regions where chaos normally occurs in the unpertur
system by applying a slow, nonresonant change to it. So
thing similar was initially demonstrated by Mandel and E
neux @6#, who applied a slow linear increase in time of th
Rayleigh number in the Lorenz equations. They showed
the onset of the first bifurcation in the equations comes
larger Rayleigh number than for the unperturbed equatio

More recently Vilasecaet al. @7# have shown that a large
amplitude slow periodic modulation of a control paramet
namely, the pump power or the detuning, can in the comp
Lorenz-Haken equations suppress chaos. They have sh
in the case of pump power modulation, that the output int
sity of the laser almost exactly follows the intensity of t
stationary solution corresponding to the instantaneous v
of the pump power, as the pump power is modulated ab
the chaos threshold. The system remains close to~tracks! the
steady state solution at any time instead of becoming cha
when the pump crosses the chaos threshold. They
showed that the system is globally stable by the fact that
stability was unaffected by the value of the initial condition
Their paper goes on to give a detailed account of the effec
modulating the detuning in the laser, achieving similar
sults. Although at the present time it is not possible with o
experimental apparatus to modulate the detuning, we are
to modulate the pump power. Our experiments show that
suppression of chaos by modulating the pump power as
sented by Vilasecaet al. @7# is indeed possible in the opti
cally pumped far-infrared15NH3 laser when it displays
Lorenz-like chaos. There is experimental evidence that
method of Vilasecaet al. can control dynamical regimes an
inhibit chaos in a nonautonomous~i.e., driven! system@13#.
571063-651X/98/57~1!/397~5!/$15.00
d
-
ol
y-

ies

r
lso
r
-
e
le
d
e-

at
t

s.

,
x
n,
-

ue
ut

tic
so
e

.
of
-
r
ble
e
e-

e

II. EXPERIMENT

The experimental setup is shown schematically in Fig
The most significant parts of the setup include the13CO2
laser pump and the method whereby its output is modula
The rest of the setup is the same as has been previo
reported by Winet al. @8#. The 13CO2 laser pump power is
controlled by the use of an acousto-optic modulator~AOM!.
The power of the rf traveling wave injected into the crys
determines how much of the incident light is diffracted. Am
plitude modulating the rf drive therefore gives a simp
means of producing a time varying pump power. We ha
used an arbitrary function generator to produce the comp
functions shown in the experimental figures. In this way
were able to establish pump levels where the system
stable or unstable, and thereby bracket the chaos thres
level. Because slow drifts of pressures and cavity lengths
lead to long term uncertainties in the values of the syst
parameters we have tried as much as possible to set up
narios where the control is demonstrated unambiguou
within single short experimental records.

III. RESULTS

In order to demonstrate control of chaos the signal sho
in the upper portion of Fig. 2 was applied to the pump. T
signal is the amplitude of the diffracted light from the AOM
inverted to reflect the behavior of the pump. The sign
shows an oscillation of frequency approximately 600 Hz f
lowed by two periods of constant pump intensity. The mod
lation period is around 1024 of the average frequency of th
chaotic pulsations and compares well with the theory. T
response of the laser to the two constant pump power le
shows that the chaos threshold is somewhere between t
levels. The peak to peak amplitude of the oscillations sho
in the figure is about 15% of the chaos threshold pu
power. Control at such a low ratio is achievable with t
complex Lorenz-Haken equations but is at the lower end
the range. However, whenever measurements of the c
threshold of the laser are made it has always been hig
than that shown by the theory. There is good reason to
lieve that one of the explanations for this is imperfect pum
mode coupling to the laser mode in the cavity. It has clea
been shown that if the pump mode is not matched to the la
mode the pump power required to reach the chaos thres
increases markedly@9#. As the pump mode could never b
perfectly coupled to the laser mode due to their difference
397 © 1998 The American Physical Society
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FIG. 1. The experimental setup showing th
carbon dioxide pump laser, the ammonia las
and the detectors used to monitor the pum
power ~HgCdTe detector! and frequency~Lamb
dip cell! and the ammonia laser output intensi
~Schottky diode!.
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wavelength an increase in the pump power required to re
chaos threshold follows and this results in a decrease in
ratio of modulation amplitude to threshold level.

In Fig. 2 the output of the laser clearly shows that t
chaos threshold is somewhere between the two cons
pump power levels and that the modulations oscillate ab
the chaos threshold. The oscillations show no chaos, ind
ing that the chaos has been suppressed in the manner s
by Vilasecaet al. Figure 3 is an expansion of a part of th
chaotic region in Fig. 2 to show that the laser is produc
Lorenz-like chaos with long spirals. This behavior has be
observed in the laser for only a small region of tuning wh
is close to zero detuning. The pressure was found not to
critical with control being achieved as long as the pressur
above about 25mbar. This is the region where the chaos
the laser approaches closest to true Lorenz chaos, with
double cusp observed in the return maps almost disappea
@9#.

FIG. 2. Time evolution of the output intensity of the laser, t
lower time trace, plus the corresponding pump power intensity
the upper time trace. Behavior during the two constant pump po
periods indicates clearly that the chaos threshold must be so
where between the two levels. The laser was operated at a pre
of 30 mbar. Amplitude units are in volts, which is proportional
intensity.
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Whenever the behavior deviates from that shown in Fig
the behavior shown in Figs. 4 or 6 appears. In the laser
dynamics always destabilize first on the negative slope of
modulation of the pump power and then the instabil
spreads to the positive slope as any parameter, such a
tuning or pump power modulation intensity, are chang
away from stability. The region which becomes chaotic l
is where the pump power modulation slope is maximu
Figure 5 shows a closeup of the region represented by
negative slope of the pump power in Fig. 4. The perio
behavior shown here is always precursory to the chaotic
havior displayed in Fig. 6. Even in Fig. 7, a closeup of t
modulations in Fig. 6, the periodic behavior is present bef
the oscillations die away.

Vilasecaet al. @7# reported similar less than perfect trac
ing behavior where the laser detuning was modulated.
have examined numerical solutions of the complex Lore
Haken equations for zero detuning and found similar beh
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FIG. 3. Time evolution of a small portion of the intensity data
Fig. 2. The characteristic spiraling observed in Lorenz chaos
clearly present. Amplitude units are in volts, which is proportion
to intensity.
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57 399EXPERIMENTALLY TRACKING UNSTABLE STEADY . . .
ior as the pump power is increased or modulation amplit
is decreased. Figures 8~a!–8~d! show the transition to chao
as the modulation amplitude is changed from 2.3 to 1.5,
an average pump power of 14 which is at the chaos thre
old. We hypothesize that the behavior shown in Fig. 8 is d
to the delayed onset of the bifurcation to chaos which na
rally occurs in the Lorenz equations@10,11#. When the Lo-
renz equations show metastable chaos, the phase spa
divided into three basins of attraction, two of which conta
stable fixed points and one of which has a chaotic attra
whose trajectories at one time intersect either basin of
fixed points to finish at one of them. Figure 8~a! shows a
small period of preturbulence after which the trajectory s
rals into the tracking fixed point, indicating that the lim
cycle which denotes the boundary between the basins o
traction in the Lorenz equations exists well above the ch
threshold. Figure 8~b! shows the trajectory intersecting

FIG. 4. The time evolution of the laser intensity and pum
power intensity as shown in Fig. 2. The negative slope of the pu
power modulation is periodic. The laser operated with all the sa
parameters as in Fig. 2 but with the laser slightly tuned away. A
plitude units are in volts, which is proportional to intensity.

FIG. 5. A closeup of the output intensity shown in Fig. 4. Am
plitude units are in volts, which is proportional to intensity.
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stable basin on the positive slope trying to settle on one
the stable fixed points but not having settled down enoug
stay within this basin on the negative slope. The traject
henceforth spirals outward again into preturbulence. O
the trajectory is close enough to the stable fixed point as
slope of the pump power changes from positive to negat
the trajectory stays within the basin of the stable point a
thereafter remains there. The unstable limit cycle which
fines the border between the stable and unstable basins t
fore must be smaller in size on the negative slope of
pump power modulation than on the positive slope. In fac
Fig. 8~c! the limit cycle no longer exists on the negativ
slope but obviously does on the positive slope. Figure 8~d!
shows the attractor when chaos has fully developed.
main differences between the route to chaos in the laser
that shown in the equations is the appearance of the non
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FIG. 6. The time evolution of the laser intensity and pum
power intensity as shown in Fig. 2. The negative slope of the pu
power modulation is chaotic and resembles Lorenz-like chaos in
spiral-like nature. The laser operated with all the same parame
as in Fig. 2 but with the laser tuned slightly more than in Fig.
Amplitude units are in volts, which is proportional to intensity.

FIG. 7. A closeup of the output intensity shown in Fig. 6. Am
plitude units are in volts, which is proportional to intensity.
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400 57DYKSTRA, RAYNER, TANG, AND HECKENBERG
otic fast oscillation described above in the laser betw
chaos and steady state. This seems to be similar to wh
observed in the laser when it is taken through the bifur
tions to chaos in a more conventional way@12#.

It could be thought that a system one of whose parame
is changing only very slowly compared with its intrinsic d
namics should be in a quasi steady state. However, th
clearly not the case here because the dynamics have o
ously been changed radically. As a next level of approxim
tion one might consider modulation with a constant rate
change. Indeed as can be seen in Figs. 9 and 10 a p
power with a constant rate of change does delay the ons
the bifurcation when the pump power is increasing in tim
Figure 9 clearly shows the transition to chaos in the la
significantly delayed. In this experiment, the chaos thresh

FIG. 8. Numerical results showing the route to chaos as
pump power modulation amplitude is changed.s52.0, b50.25,
and r 514. ~a! has the peak to peak pump power modulation a
plitude at 4.6,~b! at 4.2,~c! at 3.8, and~d! at 3.0. The time unit is
g'

21.

FIG. 9. Time evolution of the output intensity of the laser a
the corresponding pump power intensity. The delayed onset of
bifurcation to chaos is clearly present as it is above the cons
pump power which is already chaotic. The laser was operated
pressure of 30mbar. Amplitude units are in volts, which is propo
tional to intensity.
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for a steady pump can be seen to lie below the middle on
the three levels, while the onset of chaos during the ra
occurs at a considerably higher level, as indicated by
dotted line. Solutions to the equations nearly always sho
delay. In the example shown in Fig. 10 the onset of
bifurcation to chaos is delayed sufficiently to be preven
completely for the parameter range shown. Figure 10 a
shows that when the pump power has a negative rate
change the stability disappears above the chaos thresh
This has been found over a wide range of the pump powr
when the rate of change is negative. It could be that
bifurcation is also delayed with the transition to stability o
curring at lower pump power, however, this cannot be d
cerned from the experimental data at present. What can
concluded from this is that one has to be very careful
using approximations to describe slow dynamic change
potentially chaotic systems.

IV. CONCLUSIONS

We have shown in this paper that by modulating the pu
power of the optically pumped far-infrared15NH3 laser, sup-
pression of Lorenz-like chaos is possible as predicted
Vilaseca et al. The system tracks the formerly unstab
steady state a significant distance into the chaotic regime
stability is lost it always happens as the pump paramete
dropping rather than on the rise. This is consistent with
behavior when the pump power is ramped up and down w
constant rates of change. In every case, we have confir
that numerical solutions of the complex Lorenz-Haken eq
tions exhibit behavior similar to that observed.
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FIG. 10. The time evolution in the nondetuned Lorenz-Hak
equations of the output intensity~dotted line! as the pump power
~solid line! is ramped up and down. The horizontal lines indicate
lasing threshold and the chaos threshold for the laser. The del
bifurcations are clearly visible on the positive slope. The nega
slope instantaneously spirals out into chaos, showing no stab
whatsoever for higher pump powers. The turn off is hard to jud
with the preturbulent region which the laser has to negotiate fi
The figure therefore gives no clear estimate of the chaos thres
for the negative slope. The time unit isg'

21.
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